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The syntheses of various types of hexakis(4-functionalized-
phenyl)benzenes 1 and hexakis[4-(4′-functionalized-phenyl-
ethynyl)phenyl]benzenes 2 by the cobalt-catalyzed cyclotri-
merization of diarylacetylenes and by the Sonogashira coup-
ling reaction of 1e with arylacetylenes, respectively, are
described. X-ray crystallographic analysis showed that host
1e or 2f forms a 2-D network by unique I‚‚‚I or CH‚‚‚OdC
interactions, respectively.

Hexaarylbenzene derivatives have attracted consider-
able attention in the field of materials science as precur-
sors for graphite-like, dendritic, or photoconductive poly-
cyclic aromatic hydrocarbons,1,2 or as a scaffold for a
starlike array of functional materials such as porphyrin.3
Hexaarylbenzene derivatives also serve as guest-inclu-
sion organic crystals directed to organic zeolites. Re-
cently, we have reported the 2-D or 3-D hydrogen-bonded
networks of hexakis(4-hydroxyphenyl)benzene,4a hexa-
kis(4-carboxyphenyl)benzene,4b and hexakis(4-carbam-

oylphenyl)benzene4c with guest-inclusion ability. These
are highly symmetrical molecules that can support six
radial hydrogen-bonding sites for the formation of a
predictable network with cavity based on multipoint
cooperative interactions, and exhibit an orthogonal ar-
rangement of the interactive moieties with respect to the
central benzene core, the strategy of which can prevent
network interpenetration. As a next generation, we have
planned to introduce various types of interactive groups
on the hexaarylbenzenes for the construction of new
networks with guest-inclusion ability and to expand the
cavities of their networks.5 Here we report the syntheses
of various types of hexakis(4-functionalized-phenyl)-
benzenes 1 and hexakis[4-(4′-functionalized-phenylethy-
nyl)phenyl]benzenes 2 (Chart 1) directed to forming host
molecules for guest-inclusion networks in the solid state.

The Co2(CO)8-catalyzed cyclotrimerization1,4 of bis(4-
cyanophenyl)acetylene or bis[4-(octanoylamino)phenyl]-
acetylene produced hexakis(4-cyanophenyl)benzene6 (1a)
(80% yield) or hexakis[4-(octanoylamino)phenyl]benzene
(1b) (97% yield), respectively (Scheme 1). The hydrolysis
of 1b by 6 M HCl gave hexakis(4-aminophenyl)benzene
(1c) (67% yield), which was converted by octyl isocyanate
to hexakis[4-(N′-octylureido)phenyl]benzene (1d) (94%
yield). The 6-fold iodination of hexaphenylbenzene with
[bis(trifluoroacetoxy)iodo]benzene7 and I2 gave hexakis-
(4-iodophenyl)benzene (1e) (79% yield, Scheme 2), which
is an alternative method for the reaction of hexakis(4-
trimethylsilylphenyl)benzene with ICl.8 The 6-fold lithia-
tion of 1e by n-BuLi followed by reaction with B(OMe)3

gave hexakis[4-(dihydroxyboryl)phenyl]benzene (1f) (57%
yield).9 It is expected to form a 2-D metal-coordinated
network for 1a and a 2-D or 3-D hydrogen-bonded
network with guest-inclusion ability for 1b, 1d, and 1f.
It is also expected to serve as a precursor of an expanded
hexaarylbenzene derivative for 1c, 1e, and 1f.

Next, the 6-fold Sonogashira coupling reaction of 1e
with 4-functionalized-phenylacetylenes in Et3N-THF in
the presence of PdCl2(PPh3)2, CuI, and PPh3 (18 mol %
each) was carried out to synthesize hexakis[4-(4′-func-
tionalized-phenylethynyl)phenyl]benzenes 2 (Scheme 3).8,10

Thus, 4-cyanophenylethynyl (2a), 4-pyridylethynyl (2b),
4-(tert-butyldimethylsilyloxy)phenylethynyl (2c), and
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4-(ethoxycarbonyl)phenylethynyl (2d) groups were intro-
duced at the para position of hexaphenylbenzene in 46%,
41%, 44%, and 39% yields, respectively. The deprotection
of 2c by TBAF or 2d by KOH gave hexakis[4-(4′-hy-
droxyphenylethynyl)phenyl]benzene (2e) (93% yield) or

hexakis[4-(4′-carboxyphenylethynyl)phenyl]benzene (2f)
(62% yield), respectively. It is expected to form a 2-D
metal-coordinated or hydrogen-bonded expanded network
with guest-inclusion ability for 2a and 2b or 2e and 2f,
respectively.

Single crystals of 1e suitable for X-ray diffraction
analysis were obtained as 1e‚p-xylene by slow diffu-
sion of p-xylene into a solution of 1e in nitroben-
zene.11 Host 1e forms a 2-D network sheet by two types
of iodine‚‚‚iodine interactions (Figure 1a). One type is an
attractive iodine-iodine interaction with a distance of
I1‚‚‚I2 ) 4.273 Å, and the other type is a close-packing
contact with a distance of I2‚‚‚I2′ ) 4.290 Å.12 It is known
that the I atom is polarized δ(+) in the polar region and
δ(-) in the equatorial region of the C-I bond.12 Although
these I‚‚‚I contact distances are somewhat longer than
twice the Bondi’s van der Waals radius of the I atom,13

the contact angles of C-I1‚‚‚I2 ) 82.61° and C-I2‚‚‚I1

(11) Crystal data for 1e‚p-xylene: tetragonal, P42212, a ) 15.627-
(3) Å, c ) 9.717(3) Å, V ) 2373.0(9) Å3, Z ) 2, T ) 173 K, R ) 0.059,
Rw ) 0.152 (I > 2σ(I)), and GOF ) 1.07. Crystal data for 2f‚7(MeOH):
triclinic, P1h, a ) 11.637(4) Å, b ) 13.290(4) Å, c ) 18.076(5) Å, R )
92.762(4)°, â ) 102.061(4)°, γ ) 111.491(4)°, V ) 2519.9(12) Å3, Z ) 2,
T ) 100 K, R ) 0.097, Rw ) 0.134 (I > 3σ(I)), and GOF ) 2.49.

CHART 1

SCHEME 1

SCHEME 2

SCHEME 3

FIGURE 1. X-ray crystal structure of 1e‚p-xylene as viewed
down along the c axis: a 2-D sheet of 1e (a) without and (b)
with p-xylenes; (c) one cleft of 1e with p-xylene; and a packing
diagram of several 2-D sheets of 1e (d) without and (e) with
p-xylene. All hydrogen atoms, except in part c, are omitted
for clarity.

750 J. Org. Chem., Vol. 70, No. 2, 2005



) 142.93° are consistent with a polarization interaction
between I atoms of type II defined by Desiraju, and the
contact angle of C-I2‚‚‚I2′ ) 80.96° is consistent with a
close-packing contact of type I.12b,e,f As shown in parts b
and c of Figure 1, four molecules of 1e in the 2-D network
sheet produce a cleft surrounded by six iodine atoms, in
which one molecule of p-xylene is accommodated by a
two-point I‚‚‚π interaction with an I1‚‚‚phenyl ring center
distance of 3.272 Å,12d,e and by a four-point CH‚‚‚I
interaction with an H‚‚‚I2 distance of 3.162 Å (C‚‚‚I2 )
4.050 Å).14 The somewhat longer I‚‚‚I contact distances
could arise from the inclusion of p-xylene in the iodine-
iodine network of 1e. The adjacent 2-D network sheets
are a center of inversion to each other, and are layered
in an ‚‚‚ABAB‚‚‚ sequence along the c axis with a sheet-
to-sheet distance of 4.86 Å (Figure 1a,b,d). Consequently,
p-xylene that is accommodated in a cleft of the 2-D
network sheet is sandwiched between two central ben-
zene cores of 1e in the adjacent upper and lower 2-D
sheets (core-to-core distance of 9.713 Å) by edge-to-face
π-π (CH-π) interaction with a closest C‚‚‚C distance of
3.716 Å (Figure 1a,b,e, also see Supporting Information).

Single crystals of 2f suitable for X-ray diffraction
analysis were obtained as 2f‚7(MeOH) by slow evapora-
tion of a solution of 2f and 4 equiv of pyrene in MeOH-
CHCl3.11 Pyrene was not included in the crystal lattice
of 2f. In marked contrast to hexakis(4-carboxyphenyl)-
benzene (3), which forms a 2-D hydrogen-bonded network
with large triangular cavities (one side of ca. 15.2 Å)
based on a hydrogen-bonded carboxylic acid dimer,4b the
expanded host 2f has not produced a similar network to
that of 3 at this stage. An appropriate guest molecule
fitting the size and shape of a hypothetical cavity of 2f
(one side of ca. 30 Å) might be required to maintain a
similar network to that of 3. Figure 2a shows an actual
2-D sheet of 2f. A hydrogen-bonded carboxylic acid dimer
of 2f is broken by six CO2H‚‚‚HOMe hydrogen bonds
(with distances O1‚‚‚O13 ) 2.573 Å, O3‚‚‚O8 ) 3.082 Å,
O3‚‚‚O10 ) 3.095 Å, and O5‚‚‚O11 ) 2.601 Å), and by a
self-interdigitation of 2f so as to reduce the void space.
In contrast to 3, the 2-D sheet of 2f is stabilized by face-
to-face π-π stacking and CH‚‚‚OdC interactions between
benzoic acid moieties (Figure 2b),14a wherein the close
distances between aromatic carbon atoms and carbonyl
oxygen atoms are 3.364 and 3.492 Å for C‚‚‚O2 and 3.420
and 3.479 Å for C‚‚‚O4. The 2-D sheets of 2f are layered
in an ‚‚‚ABAB‚‚‚ sequence along the a axis to give a

rectangular channel of 8.5 × 3.5 Å as a cross section,
including van der Waals radii (Figure 2c).

In summary, we have demonstrated the syntheses of
various types of hexakis(4-functionalized-phenyl)ben-
zenes 1 and hexakis[4-(4′-functionalized-phenylethynyl)-
phenyl]benzenes 2. Studies on the formation of 2-D or
3-D hydrogen-bonded or metal-coordinated networks with
guest-inclusion ability based on hosts 1 and 2 are under-
way, directed toward organic or organic-inorganic hybrid
zeolite analogues.15
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FIGURE 2. X-ray crystal structure of 2f‚7(MeOH): (a) a 2-D
sheet of 2f with hydrogen-bonded MeOH; (b) a 2-D sheet of 2f
without MeOH; and (c) packing diagram of several 2-D sheets
of 2f with MeOH as viewed down along the a axis. All hydrogen
atoms, non-hydrogen-bonded MeOH, and carbon atoms of
hydrogen-bonded MeOH for part a, all MeOH for part b, and
all hydrogen atoms and all carbon atoms of MeOH for part c
are omitted for clarity.
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