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The syntheses of various types of hexakis(4-functionalized-
phenyDbenzenes 1 and hexakis[4-(4'-functionalized-phenyl-
ethynyl)phenyl]benzenes 2 by the cobalt-catalyzed cyclotri-
merization of diarylacetylenes and by the Sonogashira coup-
ling reaction of le with arylacetylenes, respectively, are
described. X-ray crystallographic analysis showed that host
1e or 2f forms a 2-D network by unique I:--I or CH---O=C
interactions, respectively.

Hexaarylbenzene derivatives have attracted consider-
able attention in the field of materials science as precur-
sors for graphite-like, dendritic, or photoconductive poly-
cyclic aromatic hydrocarbons,? or as a scaffold for a
starlike array of functional materials such as porphyrin.3
Hexaarylbenzene derivatives also serve as guest-inclu-
sion organic crystals directed to organic zeolites. Re-
cently, we have reported the 2-D or 3-D hydrogen-bonded
networks of hexakis(4-hydroxyphenyl)benzene,** hexa-
kis(4-carboxyphenyl)benzene,* and hexakis(4-carbam-
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oylphenyl)benzene* with guest-inclusion ability. These
are highly symmetrical molecules that can support six
radial hydrogen-bonding sites for the formation of a
predictable network with cavity based on multipoint
cooperative interactions, and exhibit an orthogonal ar-
rangement of the interactive moieties with respect to the
central benzene core, the strategy of which can prevent
network interpenetration. As a next generation, we have
planned to introduce various types of interactive groups
on the hexaarylbenzenes for the construction of new
networks with guest-inclusion ability and to expand the
cavities of their networks.?> Here we report the syntheses
of various types of hexakis(4-functionalized-phenyl)-
benzenes 1 and hexakis[4-(4'-functionalized-phenylethy-
nyl)phenyl]benzenes 2 (Chart 1) directed to forming host
molecules for guest-inclusion networks in the solid state.

The Coy(CO)s-catalyzed cyclotrimerization'* of bis(4-
cyanophenyl)acetylene or bis[4-(octanoylamino)phenyl]-
acetylene produced hexakis(4-cyanophenyl)benzene® (1a)
(80% yield) or hexakis[4-(octanoylamino)phenyl]benzene
(1b) (97% yield), respectively (Scheme 1). The hydrolysis
of 1b by 6 M HC1 gave hexakis(4-aminophenyl)benzene
(1e) (67% yield), which was converted by octyl isocyanate
to hexakis[4-(N'-octylureido)phenyl]benzene (1d) (94%
yield). The 6-fold iodination of hexaphenylbenzene with
[bis(trifluoroacetoxy)iodolbenzene” and I, gave hexakis-
(4-iodophenyl)benzene (1e) (79% yield, Scheme 2), which
is an alternative method for the reaction of hexakis(4-
trimethylsilylphenyl)benzene with IC1.2 The 6-fold lithia-
tion of 1e by n-BulLi followed by reaction with B(OMe);
gave hexakis[4-(dihydroxyboryl)phenyl]benzene (1f) (57%
yield).? It is expected to form a 2-D metal-coordinated
network for 1la and a 2-D or 3-D hydrogen-bonded
network with guest-inclusion ability for 1b, 1d, and 1f.
It is also expected to serve as a precursor of an expanded
hexaarylbenzene derivative for 1e, le, and 1f.

Next, the 6-fold Sonogashira coupling reaction of le
with 4-functionalized-phenylacetylenes in EtsN—THF in
the presence of PdCly(PPhy)s, Cul, and PPh; (18 mol %
each) was carried out to synthesize hexakis[4-(4'-func-
tionalized-phenylethynyl)phenyl]benzenes 2 (Scheme 3).810
Thus, 4-cyanophenylethynyl (2a), 4-pyridylethynyl (2b),
4-(tert-butyldimethylsilyloxy)phenylethynyl (2¢), and

(4) (a) Kobayashi, K.; Shirasaka, T.; Sato, A.; Horn, E.; Furukawa,
N. Angew. Chem., Int. Ed. Engl. 1999, 38, 3483—3486. (b) Kobayashi,
K.; Shirasaka, T.; Horn, E.; Furukawa, N. Tetrahedron Lett. 2000, 41,
89-93. (¢) Kobayashi, K.; Sato, A.; Sakamoto, S.; Yamaguchi, K. J.
Am. Chem. Soc. 2003, 125, 3035—3045.

(5) (a) Sada, K.; Sugahara, M.; Kato, K.; Miyata, M. J. Am. Chem.
Soc. 2001, 123, 4386-4392. (b) Holman, K. T.; Martin, S. M.; Parker,
D. P; Ward, M. D. J. Am. Chem. Soc. 2001, 123, 4421—-4431. (c)
Biradha, K.; Hongo, Y.; Fujita, M. Angew. Chem., Int. Ed. 2002, 41,
3395—3398.

(6) Sakon, Y.; Ohnuma, T.; Hashimoto, M.; Saito, S.; Tsutsui, T.;
Adachi, C. U.S. Patent 5077142, 1991.

(7) Merkushev, E. B.; Simakhina, N. D.; Koveshnikova, G. M.
Synthesis 1980, 486—487.

(8) Hyatt, J. A. Org. Prep. Proced. Int. 1991, 23, 460—463.

(9) For tetrakis[4-(dihydroxyboryl)phenyllmethane, see: Fournier,
J.-H.; Maris, T.; Wuest, J. D.; Guo, W.; Galoppini, E. J. Am. Chem.
Soc. 2003, 125, 1002—1006.

(10) (a) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara,
N. Synthesis 1980, 627—629. (b) Sonogashira, K. In Metal-catalyzed
Cross-coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-
VCH: Weinheim, Germany, 1998; Chapter 5.

J. Org. Chem. 2005, 70, 749—752 749



1a:X=CN

1b: X = NHCOC7H15'”
1c: X = NH,

1d: X = NHCONHCgH17-n
1e: X =1

1'ZX:B(OH)2 2a:X=C,Y=CN 2e:X=C,Y=0H
2b: X=N 2f: X=C, Y =COH
2c:X=C,Y=0TBS
2d: X =C, Y = CO,Et
SCHEME 1
10 mol%
Co,COg 2 / -
O = 222 GO
dioxane X \ 5
100 °C
1a: X=CN 80%
6 MHCI, reflux [ }b_: X =NHCOC7Hisn  97%
. c:X= NH2 67%
18 equiv 1-Oct-NCO [ 1d: X = NHCONHCgH7-n  94%

i-PrOH, 55 °C

SCHEME 2
3.3 equiv PhlI(OCOCF3),

2 { ::: > 3.1 equiv Iy 7D /C>7I>
X I 6 CH2C|2, r.t. B N I \ \ / 6
1e 79%
1) 18 equiv n-BuLi

THF, =78 °C tor.t. N / @ >
> B(OH
2) 36 equiv B(OMe)3 PR\ (OH) A
-78°Ctort o
3) 1 M HCI 1t 57%

SCHEME 3

18 mol% PdCly(PPhg)o
18 mol% Cul
— 18 mol% PPhg

le }@X_Y Et;N-THF, reflux
Z / — - —
LY 2 \/X‘Y>6

2a:X=C,Y=CN 46%
2b: X =N 41%
2c:X=C,Y=0TBS 44%
2d: X=C, Y=COsEt 39%

7.5 equiv

60 mol% TBAF
—_—

c 2e:X=C,Y=0H 93%
THF-H0, rt.
g S0eaVKOH o G Y=COMH  62%
THF—H,0
reflux

4-(ethoxycarbonyl)phenylethynyl (2d) groups were intro-
duced at the para position of hexaphenylbenzene in 46%,
41%, 44%, and 39% yields, respectively. The deprotection
of 2¢ by TBAF or 2d by KOH gave hexakis[4-(4'-hy-
droxyphenylethynyl)phenyl]benzene (2e) (93% yield) or
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FIGURE 1. X-ray crystal structure of 1e'p-xylene as viewed
down along the ¢ axis: a 2-D sheet of 1e (a) without and (b)
with p-xylenes; (c) one cleft of 1e with p-xylene; and a packing
diagram of several 2-D sheets of 1e (d) without and (e) with
p-xylene. All hydrogen atoms, except in part c, are omitted
for clarity.

hexakis[4-(4'-carboxyphenylethynyl)phenyllbenzene (2f)
(62% yield), respectively. It is expected to form a 2-D
metal-coordinated or hydrogen-bonded expanded network
with guest-inclusion ability for 2a and 2b or 2e and 2f,
respectively.

Single crystals of le suitable for X-ray diffraction
analysis were obtained as le-p-xylene by slow diffu-
sion of p-xylene into a solution of le in nitroben-
zene.!! Host 1e forms a 2-D network sheet by two types
of iodine---iodine interactions (Figure 1a). One type is an
attractive iodine—iodine interaction with a distance of
I1---12 = 4.273 A, and the other type is a close-packing
contact with a distance of 12---12' = 4.290 A.12 It is known
that the I atom is polarized 6(+) in the polar region and
O0(—) in the equatorial region of the C—1I bond.'? Although
these I---I contact distances are somewhat longer than
twice the Bondi’s van der Waals radius of the I atom,!?
the contact angles of C—I1---12 = 82.61° and C—12---11
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(3) A, ¢=19.717(3) A, V= 2373.009) A%, Z =2, T = 173 K, R = 0.059,
Ry, =0.152 (I > 20(I)), and GOF = 1.07. Crystal data for 2f-7(MeOH):
triclinic, P1, @ = 11.637(4) A, b = 13.290(4) A, ¢ = 18.076(5) A, o =
92.762(4)°, # = 102.061(4)°, y = 111.491(4)°, V. =2519.9(12) A3, Z = 2,
T =100 K, R = 0.097, R, = 0.134 (I > 30(])), and GOF = 2.49.



= 142.93° are consistent with a polarization interaction
between I atoms of type II defined by Desiraju, and the
contact angle of C—12---12' = 80.96° is consistent with a
close-packing contact of type I.12>¢f As shown in parts b
and c of Figure 1, four molecules of 1e in the 2-D network
sheet produce a cleft surrounded by six iodine atoms, in
which one molecule of p-xylene is accommodated by a
two-point I+~ interaction with an I1---phenyl ring center
distance of 3.272 A,?d¢ and by a four-point CH:---I
interaction with an H---I2 distance of 3.162 A (C---I2 =
4.050 A).'* The somewhat longer I---I contact distances
could arise from the inclusion of p-xylene in the iodine—
iodine network of 1le. The adjacent 2-D network sheets
are a center of inversion to each other, and are layered
in an --*ABAB--* sequence along the ¢ axis with a sheet-
to-sheet distance of 4.86 A (Figure 1a,b,d). Consequently,
p-xylene that is accommodated in a cleft of the 2-D
network sheet is sandwiched between two central ben-
zene cores of le in the adjacent upper and lower 2-D
sheets (core-to-core distance of 9.713 A) by edge-to-face
m—mx (CH—u) interaction with a closest C-:-C distance of
3.716 A (Figure 1a,b,e, also see Supporting Information).

Single crystals of 2f suitable for X-ray diffraction
analysis were obtained as 2f-7(MeOH) by slow evapora-
tion of a solution of 2f and 4 equiv of pyrene in MeOH—
CHClI;.1 Pyrene was not included in the crystal lattice
of 2f. In marked contrast to hexakis(4-carboxyphenyl)-
benzene (3), which forms a 2-D hydrogen-bonded network
with large triangular cavities (one side of ca. 15.2 A)
based on a hydrogen-bonded carboxylic acid dimer,* the
expanded host 2f has not produced a similar network to
that of 3 at this stage. An appropriate guest molecule
fitting the size and shape of a hypothetical cavity of 2f
(one side of ca. 30 A) might be required to maintain a
similar network to that of 3. Figure 2a shows an actual
2-D sheet of 2f. A hydrogen-bonded carboxylic acid dimer
of 2f is broken by six COsH:-*-HOMe hydrogen bonds
(with distances 01---013 = 2.573 A, 03+--08 = 3.082 A,
03-+:010 = 3.095 A, and 05---011 = 2.601 A), and by a
self-interdigitation of 2f so as to reduce the void space.
In contrast to 3, the 2-D sheet of 2f is stabilized by face-
to-face m— stacking and CH:--O=C interactions between
benzoic acid moieties (Figure 2b),'42 wherein the close
distances between aromatic carbon atoms and carbonyl
oxygen atoms are 3.364 and 3.492 A for C+--02 and 3.420
and 3.479 A for C-+-O4. The 2-D sheets of 2f are layered
in an ---ABAB--+ sequence along the a axis to give a
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FIGURE 2. X-ray crystal structure of 2f-7(MeOH): (a) a 2-D
sheet of 2f with hydrogen-bonded MeOH; (b) a 2-D sheet of 2f
without MeOH; and (c) packing diagram of several 2-D sheets
of 2f with MeOH as viewed down along the a axis. All hydrogen
atoms, non-hydrogen-bonded MeOH, and carbon atoms of
hydrogen-bonded MeOH for part a, all MeOH for part b, and
all hydrogen atoms and all carbon atoms of MeOH for part c
are omitted for clarity.

rectangular channel of 8.5 x 3.5 A as a cross section,
including van der Waals radii (Figure 2c).

In summary, we have demonstrated the syntheses of
various types of hexakis(4-functionalized-phenyl)ben-
zenes 1 and hexakis[4-(4'-functionalized-phenylethynyl)-
phenyllbenzenes 2. Studies on the formation of 2-D or
3-D hydrogen-bonded or metal-coordinated networks with
guest-inclusion ability based on hosts 1 and 2 are under-
way, directed toward organic or organic—inorganic hybrid
zeolite analogues.!®
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